Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA)

نویسندگان

  • A. N. French
  • F. Jacob
  • W. Timmermans
  • A. Gieske
  • Z. Su
  • H. Su
  • F. Li
  • N. Brunsell
چکیده

Accurate estimation of surface energy fluxes from space at high spatial resolution has the potential to improve prediction of the impact of land-use changes on the local environment and to provide a means to assess local crop conditions. To achieve this goal, a combination of physically based surface flux models and high-quality remote-sensing data are needed. Data from the ASTER sensor are particularly wellsuited to the task, as it collects high spatial resolution (15–90 m) images in visible, near-infrared, and thermal infrared bands. Data in these bands yield surface temperature, vegetation cover density, and land-use types, all critical inputs to surface energy balance models for assessing local environmental conditions. ASTER is currently the only satellite sensor collecting multispectral thermal infrared images, a capability allowing unprecedented surface temperature estimation accuracy for a variety of surface cover types. Availability of ASTER data to study surface energy fluxes allows direct comparisons against ground measurements and facilitates detection of modeling limitations, both possible because of ASTER’s higher spatial resolution. Surface energy flux retrieval from ASTER is demonstrated using data collected over an experimental site in central Iowa, USA, in the framework of the Soil Moisture Atmosphere Coupling Experiment (SMACEX). This experiment took place during the summer of 2002 in a study of heterogeneous agricultural croplands. Two different flux estimation approaches, designed to account for the spatial variability, are considered: the Two-Source Energy Balance model (TSEB) and the Surface Energy Balance Algorithm or Land model (SEBAL). ASTER data are shown to have spatial and spectral resolution sufficient to derive surface variables required as inputs for physically based energy balance modeling. Comparison of flux model results against each other and against ground based measurements was promising, with flux values commonly agreeing within ̈50 W m . Both TSEB and SEBAL showed systematic agreement and responded to spatially varying surface temperatures and vegetation densities. Direct comparison against ground Eddy Covariance data suggests that the TSEB approach is helpful over sparsely vegetated terrain. D 2005 Published by Elsevier Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ASTER Observations of the Spectral Emissivity over New Mexico

On several days in 2000 & 2001 the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) on the Terra satellite obtained data over the Jornada Experimental Range test site along the Rio Grande river and the White Sand National Monument in New Mexico. ASTER has 14 channels from the visible (VNIR) through the thermal infrared (TIR) with 15 m resolution in the VNIR and 90 m in the...

متن کامل

Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA

Surface temperature anomalies associated with geothermal activity at Bradys Hot Springs, Churchill County, Nevada were mapped using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR) image data. In order to highlight subsurface contributions of geothermal heat, the ASTER images were processed to minimize temperature variations caused by the diurnal hea...

متن کامل

Estimating Evapotranspiration from an Improved Two-Source Energy Balance Model Using ASTER Satellite Imagery

Reliably estimating the turbulent fluxes of latent and sensible heat at the Earth’s surface by remote sensing is important for research on the terrestrial hydrological cycle. This paper presents a practical approach for mapping surface energy fluxes using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images from an improved two-source energy balance (TSEB) model. The or...

متن کامل

ASTER Observations of the Spectral Emissivity for Arid Lands

On May 9, 2000 the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) on the Terra satellite obtained data over the Jornada Experimental Range test site along the Rio Grande river and the White Sand National Monument in New Mexico. ASTER has 14 channels from the visible (VNIR) through the thermal infrared (TIR) with 15 m resolution in the VNIR and 90 m in the TIR. The overpa...

متن کامل

Mapping Surface Broadband Emissivity of the Sahara Desert Using ASTER and MODIS Data

Surface broadband emissivity in the thermal infrared region is an important parameter for the studies of the surface energy balance. This paper focuses on estimating a broadband window emissivity from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) data. Both sensors are on board the NASA Earth Observing System (EOS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005